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Observations of gravel transport and morphological 
response on a supply-limited beach backed by 
bulkheads and exposed to waves, wakes, and tidal 
currents, Point White, Bainbridge Island

Puget Sound Shorelines and the Impacts of Armoring May 11-4, 2009





Gravel Tracer Study Goals

 Resolve seasonal 
patterns of sediment 
transport and 
morphology change on 
MSG beach

 Quantify relative 
importance of waves, 
wakes, tidal currents

 Validate integrated 
wake impact modeling 
system
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Low energy fetch-restricted wave environment

 Beach supply limited by 
structures

 Morphology shaped by large 
infrequent storms and long 
term exposure to wakes
 Limited or gradual post-storm 

recovery
 Vessel wakes  significant
 Requires long term, high 

resolution monitoring to 
capture morphologic response



Bulkhead and beach characteristics inventory 



Gravel Transport Study



Long-term 
wave gage

Long-term wind gage Stationary ADP

Kayak-based ADP transects Tripod-mounted ADV

Process Measurements



Tracer Recovery





Larger 
particles

Smaller 
particles

Particle Dispersion and Sorting
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Integrated Modeling

 Tidal Circulation Model
 Wind Wave Model
 Lagrangian Super Critical 

Vessel Model
 Profile Analysis Model



Rich Passage Tidal Model

 Extensive available 
current, wave, 
sediment transport, 
and ship traffic data

 Fully validated high 
res 2D models



Local wind 
climate



Wind Wave Climate Model

 Fully validated with 
local wind and wave 
measurements 
throughout study area

 Long term simulations 
of full seasonal 
climatology





Lagrangian Super-critical Vessel (LSV) Model

 Governing equations:

 Need boundary conditions…

1

0

t
g g

t

Pc QcdE U V + E + E  dt  D
dt x y x y

 ∂ ∂   ∂ ∂
+ + =   ∂ ∂ ∂ ∂    

∫

1

0
sinh

t

t

dP k d U V+ + P  + Q dt = 0
dt 2kd x x x

σ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∫

1

0
sinh

t

t

dQ k d U V+ + P  + Q dt= 0
dt 2kd y y y

σ ∂ ∂ ∂
 ∂ ∂ ∂ 
∫

0=−− U 
k
Pc

dt
dx

g 0=−− V
k
Qc

dt
dy

g

       



Wake Patterns (Yih and Zhu ,1989) 
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High speed vessel wake model



Integrated Wake Impact Modeling
Developing a Wake/Wave Climatology

 Time series of wind 
speeds, directions 
 wind wave 
climate

 Daily vessel 
schedules:
• WSF + Other 
• POFF + WSF + Other

  Sunday 

Monday, Tuesday, Wednesday 

Thursday 

Friday 

Saturday 
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Profile Analysis

 Time series of wind speed, direction
 3 CMSWave models – storm waves:   H, 

T, α
 Time series of vessel traffic and modeled 

wake time series for representative 
vessels: H, T, α

 ADCIRC – tidal currents, u,v
 Soulsby-Damgaard (2005) bedload

transport under asymmetric waves with 
current

 Δt =1 sec
 Transform waves/wakes across profile 
 Calculate q at each step & integrate 

across profile
Distance (m)

El
ev

at
io

n
(m

,M
LL

W
)

q lo
ng

(m
2 )

0 20 40 60

0

10

-1

0

1

2

Elevation
Existing climate
Spirit climate
Snohomish climate



Longshore transport model validation 
August 1 2006-October 15 2007
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November to April
 Alongshore transport 

6 to 90 times non-
storm transport

 Offshore transport of 
coarse sediment

 Sand, flat upper 
beach slope 

 Dominated by wind 
waves, site specific 
exposure

Storm Interval



May to October
 Minimal alongshore 

transport
 Onshore transport
 Gravel berm formation 

in upper beach, 
steepening

 Contributions from 
vessel wakes and tidal 
currents

Non-storm Interval



Contributions of Forcing Mechanisms

 Wind waves
 Site specific alongshore transport
 Offshore transport & flattening 

 Super-critical wakes (fast POFs)
 Offshore transport & flattening

 Sub-critical wakes (car ferries)
 Onshore transport (post-storm recovery & 

steepening)
 Site specific alongshore

 Tidal currents
 Cannot mobilize tracer-sized particles
 Enhance alongshore transport in 

combination with ferry wakes

Dominant

Subordinate



Summary

 MSG Transport Prediction on Puget Sound Beaches requires careful 
attention to 
 Site specific validation of multiple models/components
 Spatial/temporal sediment size distributions and differential transport 

of sizes and sediment supply
 Spatial (alongshore) and temporal variability in forcing mechanisms

 1D model domain not shifting with tracers
 Integrated modeling approach provides efficient tool(s) for system wide 

impact indicators
 Relative importance of key processes
 Sediment mobility
 Sediment transport potential
 Scour depth at toe of seawall
 Pre-assessment and optimization of candidate vessel operations
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