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Observations of gravel transport and morphological
response on a supply-limited beach backed by
bulkheads and exposed to waves, wakes, and tidal
currents, Point White, Bainbridge Island
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m Resolve seasonal
patterns of sediment
transport and
morphology change on
MSG beach

= Quantify relative
Importance of waves,
wakes, tidal currents

= Validate integrated
wake impact modeling
system
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m Beach supply limited by
structures

= Morphology shaped by large
Infrequent storms and long
term exposure to wakes

m Limited or gradual post-storm
recovery

m Vessel wakes - significant
m Requires long term, high

resolution monitoring to
capture morphologic response
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m Tidal Circulation Model
Wind Wave Model

Lagrangian Super Critical
Vessel Model

Profile Analysis Model




m Extensive available
: current, wave,

: L sediment transport,

' ay and ship traffic data

m Fully validated high
res 2D models
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N Grid
Driving Boundary

m Fully validated with
local wind and wave
measurements
throughout study area

Rich
Passage

Bremerton —'S;

m Long term simulations

of full seasonal
climatology

SW Grid
Driving Boundary

SE Grid
Driving Boundary






= Governing equations:
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= Need boundary conditions...
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Sunday

Monday, Tuesday, Wednesday

Thursday

Friday

Saturday

= Time series of wind
speeds, directions
- wind wave
climate

= Dally vessel
schedules:

WSF + Other
POFF + WSF + Other



Elevation (m, MLLW)

Distance (m)

Time series of wind speed, direction
m 3 CMSWave models — storm waves: H,
T, a

Time series of vessel traffic and modeled
wake time series for representative
vessels: H, T, a

m ADCIRC - tidal currents, u,v
m Soulsby-Damgaard (2005) bedload

transport under asymmetric waves with
current

At =1 sec
Transform waves/wakes across profile

Calculate g at each step & integrate
across profile
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November to April

Alongshore transport
6 to 90 times non-
storm transport

Offshore transport of
coarse sediment

Sand, flat upper
beach slope

Dominated by wind
waves, site specific
exposure



May to October

= Minimal alongshore
transport

Onshore transport

m Gravel berm formation
In upper beach,
steepening

m Contributions from
vessel wakes and tidal
currents




Dominant

Subordinate

m Wind waves
m Site specific alongshore transport
m Offshore transport & flattening

m Super-critical wakes (fast POFS)
m Offshore transport & flattening

m Sub-critical wakes (car ferries)

m Onshore transport (post-storm recovery &
steepening)

m Site specific alongshore
m Tidal currents

m Cannot mobilize tracer-sized particles

m Enhance alongshore transport in
combination with ferry wakes



MSG Transport Prediction on Puget Sound Beaches requires careful
attention to

m Site specific validation of multiple models/components

m Spatial/temporal sediment size distributions and differential transport
of sizes and sediment supply

m Spatial (alongshore) and temporal variability in forcing mechanisms
m 1D model domain not shifting with tracers

Integrated modeling approach provides efficient tool(s) for system wide
Impact indicators

m Relative importance of key processes

Sediment mobility

Sediment transport potential

Scour depth at toe of seawall

Pre-assessment and optimization of candidate vessel operations
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